Pythagorean Means
2D
definition
- quadratic mean/root mean square := $\sqrt{\frac{1}{2}(a^2+b^2)}$
- arithmetic mean := $\frac{a+b}{2}$
- geometric mean := $\sqrt{ab}$
- harmonic mean := $(\frac{1}{2}(\frac{1}{a}+\frac{1}{b}))^{-1}$
TH
$$
max(a,b) \ge QM/RMS \ge AM \ge GM \ge HM \ge min(a,b)
$$
We can prove it as below:
geometry prove 1
- $max(a,b) \ge QM/RMS$: use angle
- $QM/RMS \ge AM$: obviously
- $AM \ge GM$: obviously
- $GM \ge HM$: obviously
- $HM \ge min(a,b)$: think about their dual length, i.e.: $AM-HM$ and $AM-min(a,b)$
geometry prove 2
- similar to geometry prove 1
more than 2D
definition
- quadratic mean/root mean square := $\sqrt{\frac{1}{n}(x_1^2+x_2^2+…+x_n^2)} = \sqrt{<X^2>} = <X^2>^{\frac{1}{2}}$
- arithmetic mean := $\frac{x_1+x_2+…+x_n}{n} =
= <X^1>^1$ - geometric mean := $\sqrt{x_1x_2…x_n}$
- harmonic mean := $(\frac{1}{n}(\frac{1}{x_1}+\frac{1}{x_2}+…+\frac{1}{x_n}))^{-1} = <\frac{1}{X}>^{-1} = <X^{-1}>^{-1}$
TH
We still have
$$
max(x_1,x_2,…,x_n) \ge QM/RMS \ge AM \ge GM \ge HM \ge min(x_1,x_2,…,x_n)
$$
The prove is omitted
generalization
$Hölder \ mean := <X^p>^{\frac{1}{p}}$
- We can prove that $\displaystyle \lim_{p \to 0} Hölder \ mean = GM$
- We can prove that $p \nearrow \Rightarrow Hölder \ mean \nearrow $
By the way, We can call Hölder mean “1/p-mean-p” in analogy of “root-mean-square”