Main

Suppose you get some data from the experiment, say:

$$X_1, X_2, X_3, \ldots, X_n$$

We can easily define

$$mean \ of \ the \ data := rac{1}{n} \sum_{i=1}^n X_i$$

The above equation is without any arguments.

But when you want to define a thing to capture the deviance of the data, what should you do? There are 2 candidates

$$deviance \ of \ the \ data \ version \ 1 := rac{1}{n} \sum_{i=1}^n (X_i - mean \ of \ the \ data)^2$$
 $deviance \ of \ the \ data \ version \ 2 := rac{1}{n-1} \sum_{i=1}^n (X_i - mean \ of \ the \ data)^2$

Q: Which is better?

A:

First let us use some new notations

 $M := mean \ of \ the \ data$ $D_1 := deviance \ of \ the \ data \ version \ 1$ $D_2 := deviance \ of \ the \ data \ version \ 2$

Obviously, M, D_1, D_2 are the functions of $ec{X}$

$$egin{aligned} M &= M(ec{X}) \ D_1 &= D_1(ec{X}) \ D_2 &= D_2(ec{X}) \end{aligned}$$

If we assume that $X_i \sim (\mu, \sigma^2) i.\, i.\, d.$

i.e.

$$E(X_i) = \mu$$

 $Var(X_i) = \sigma^2$
 $X_i \ i. i. d.$

Then we can get (proof see below)

$$egin{aligned} E(M) &= \mu \ E(D_1) &= rac{n-1}{n} \sigma^2 \ E(D_2) &= \sigma^2 \end{aligned}$$

So, D_2 is better than D_1

Proof

$$egin{array}{rcl} E(D_1) &= & E(rac{1}{n}\sum_{i=1}^n (X_i-M)^2) \ &= & rac{1}{n}\sum_{i=1}^n E((X_i-M)^2) \ &= & rac{1}{n}\sum_{i=1}^n E(X_i^2+M^2-2X_iM) \ &= & rac{1}{n}\sum_{i=1}^n E(X_i^2)+E(M^2)-2E(X_iM) \end{array}$$

From

$$E(X_i) = \mu \ Var(X_i) = \sigma^2 \ X_i \ i. i. d.$$

We get

$$egin{array}{rcl} E(X_i^2)&=&\mu^2+\sigma^2\ E(M)&=&\mu\ Var(M)&=&rac{\sigma^2}{n}\ E(M^2)&=&\mu^2+rac{\sigma^2}{n} \end{array}$$

and

$$E(X_iX_j) \hspace{.1in} = \hspace{.1in} egin{cases} \mu^2+\sigma^2, i=j \ \mu^2, i
eq j \end{cases}$$

So

$$E(X_iM)=rac{1}{n}\sum_{j=1}^n E(X_iX_j)=\mu^2+rac{\sigma^2}{n}$$

So

$$E(D_1) = \frac{1}{n} \sum_{i=1}^n ((\mu^2 + \sigma^2) + (\mu^2 + \frac{\sigma^2}{n}) - 2(\mu^2 + \frac{\sigma^2}{n}))$$

= $\frac{1}{n} \sum_{i=1}^n (\frac{n-1}{n} \sigma^2)$
= $\frac{1}{n} (\frac{n-1}{n} \sigma^2) \sum_{i=1}^n 1$
= $\frac{n-1}{n} \sigma^2$

And obviously,

$$egin{array}{rcl} E(X_i^2) &=& \mu^2+\sigma^2 \ E(M) &=& \mu \ Var(M) &=& rac{\sigma^2}{n} \ E(M^2) &=& \mu^2+rac{\sigma^2}{n} \end{array}$$

$$E(X_iX_j) \hspace{.1in} = \hspace{.1in} egin{cases} \mu^2+\sigma^2, i=\ \mu^2, i
eq j \end{cases}$$

QA

Q: Can't l just use D_1

A: In fact, you can, I just say that D_2 is better than $D_1.$

Q: What if not i.i.d.?

A:

If not, it really doesn't matter too much to use D_1 or D_2 .

It is recommended to find a new random variable from your data which is likely to be i. i. d.

Another similar method is that, if the D_1 or D_2 of a variable is too big, then you must find a new random variable with smaller D_1 or D_2 .

Q: In your taxis project?

A:

In my project:

- runs are not *i*. *i*. *d*..
- tracks/worms are *i*. *i*. *d*.!

So, it doesn't matter I use D_1 or D_2 when handling runs.

```
When handling tracks/worms, I will use D_{
m 2}
```

Q: How do you know if a variable is i.i.d. or not? You are not the god!

A:

Yes, you are right, only the God know if a variable is i.i.d or not.

But, we can guess.

For example, $X_1, X_2, X_3, \ldots, X_n$ can be the height of a human. If you choose X_1 from Jilin and X_2 from Anhui, then it is likely that they are not i.i.d. But if you choose X_1 from Changchun and X_2 from Songyuan, it is likely that they are i.i.d..

For another example, $X_1, X_2, X_3, \ldots, X_n$ can be the run speed of a worm. If you choose X_1 from N_2 and X_2 from RIA - twk18, then it is likely that they are not i.i.d. But if you choose X_1 from N_2 and X_2 from N_2 , it is likely that they are i.i.d..