Main

Suppose you get some data from the experiment, say:

$$
X_1,X_2,X_3,\ldots,X_n
$$

We can easily define

$$
mean\ of\ the\ data:=\frac{1}{n}\sum_{i=1}^nX_i
$$

The above equation is without any arguments.

But when you want to define a thing to capture the deviance of the data, what should you do? There are 2 candidates

deviance of the data version
$$
1 := \frac{1}{n} \sum_{i=1}^{n} (X_i - \text{mean of the data})^2
$$

deviance of the data version $2 := \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \text{mean of the data})^2$

Q: Which is better?

A:

First let us use some new notations

 $M :=$ mean of the data $D_1 := deviance \ of \ the \ data \ version \ 1$ $D_2 := deviance \hspace{1mm} of \hspace{1mm} the \hspace{1mm} data \hspace{1mm} version \hspace{1mm} 2$

Obviously, M, D_1, D_2 are the functions of \vec{X}

$$
M=M(\vec{X})\\ D_1=D_1(\vec{X})\\ D_2=D_2(\vec{X})
$$

If we assume that $X_i \sim (\mu, \sigma^2)i$. i. d.

i.e.

$$
E(X_i) = \mu
$$

$$
Var(X_i) = \sigma^2
$$

$$
X_i \ i. \ i. d.
$$

Then we can get (proof see below)

$$
E(M) = \mu
$$

$$
E(D_1) = \frac{n-1}{n}\sigma^2
$$

$$
E(D_2) = \sigma^2
$$

So, D_2 is better than D_1

Proof

$$
E(D_1) = E(\frac{1}{n}\sum_{i=1}^n (X_i - M)^2)
$$

=
$$
\frac{1}{n}\sum_{i=1}^n E((X_i - M)^2)
$$

=
$$
\frac{1}{n}\sum_{i=1}^n E(X_i^2 + M^2 - 2X_iM)
$$

=
$$
\frac{1}{n}\sum_{i=1}^n E(X_i^2) + E(M^2) - 2E(X_iM)
$$

From

$$
E(X_i) = \mu
$$

$$
Var(X_i) = \sigma^2
$$

$$
X_i \ i.i.d.
$$

We get

$$
E(X_i^2) = \mu^2 + \sigma^2
$$

\n
$$
E(M) = \mu
$$

\n
$$
Var(M) = \frac{\sigma^2}{n}
$$

\n
$$
E(M^2) = \mu^2 + \frac{\sigma^2}{n}
$$

and

$$
E(X_iX_j) = \begin{cases} \mu^2 + \sigma^2, i = j \\ \mu^2, i \neq j \end{cases}
$$

So

$$
E(X_iM)=\frac{1}{n}\sum_{j=1}^n E(X_iX_j)=\mu^2+\frac{\sigma^2}{n}
$$

So

$$
E(D_1) = \frac{1}{n} \sum_{i=1}^n ((\mu^2 + \sigma^2) + (\mu^2 + \frac{\sigma^2}{n}) - 2(\mu^2 + \frac{\sigma^2}{n}))
$$

=
$$
\frac{1}{n} \sum_{i=1}^n (\frac{n-1}{n}\sigma^2)
$$

=
$$
\frac{1}{n} (\frac{n-1}{n}\sigma^2) \sum_{i=1}^n 1
$$

=
$$
\frac{n-1}{n}\sigma^2
$$

And obviously,

$$
E(X_i^2) = \mu^2 + \sigma^2
$$

\n
$$
E(M) = \mu
$$

\n
$$
Var(M) = \frac{\sigma^2}{n}
$$

\n
$$
E(M^2) = \mu^2 + \frac{\sigma^2}{n}
$$

$$
E(X_i X_j) = \begin{cases} \mu^2 + \sigma^2, i = j \\ \mu^2, i \neq j \end{cases}
$$

QA

Q: Can't I just use D_1

A: In fact, you can, I just say that D_2 is better than D_1 .

Q: What if not i.i.d.?

A:

If not, it really doesn't matter too much to use D_1 or D_2 .

It is recommended to find a new random variable from your data which is likely to be $i. i. d.$

Another similar method is that, if the D_1 or D_2 of a variable is too big, then you must find a new random variable with smaller D_1 or D_2 .

Q: In your taxis project?

A:

In my project:

- \bullet runs are not $i.i.d..$
- tracks/worms are $i. i. d.$!

So, it doesn't matter I use D_1 or D_2 when handling runs.

```
When handling tracks/worms, I will use D_2
```
Q: How do you know if a variable is i.i.d. or not? You are not the god!

A:

Yes, you are right, only the God know if a variable is i.i.d or not.

But, we can guess.

For example, $X_1, X_2, X_3, \ldots, X_n$ can be the height of a human. If you choose X_1 from Jilin and X_2 from Anhui, then it is likely that they are not i.i.d. But if you choose X_1 from Changchun and X_2 from Songyuan, it is likely that they are i.i.d..

For another example, $X_1, X_2, X_3, \ldots, X_n$ can be the run speed of a worm. If you choose X_1 from N_2 and X_2 from $RIA-twk18$, then it is likely that they are not i.i.d. But if you choose X_1 from N_2 and X_2 from N_2 , it is likely that they are i.i.d..